Name:		59	Curriculum Connection PR.4
E	juction or	Expression	2
An equation is a math equal. Equations hav An expression is a math Equation	nematical sentence wh e an equal sign with va athematical sentence = 3 + n = 21	nich states that one or m alues on both sides to sh that does not have an eo Expression	nore quantities are now they are equal. qual sign. = 3y + 2
Questions	s the number sente	nce an <u>expression</u> or	equation?
1) 10 +	10 = 20	2) 25	+ y
Expression	Equation	Expression	Equation
3) 3y + 8 = 17		4) 2n + 5	
Expression	Equation	Expression	Equation
5) 8 – 4	+ n = 10	6) 17 -	7 + n
Expression	Equation	Expression	Equation
7) 12	÷ 4 = 3	8) 56 ÷	y = 8
Expression	Equation	Expression	Equation
9) 100 ÷ n + 3		10) <u>25</u> + n	10 = 15
Expression	Equation	Expression	Equation
11) <u>4</u>	11) <u>40</u> – 8		– n ÷ 10
Expression	Equation	Expression	Equation

© Super Simple Sheets

supersimplesheets.com

Name:		53	Curriculum Connection PR.5
- Evaluating	j Algebraie	Expressions	- Addition
Part 1 Eval	uate the following exp	ressions for <i>x</i> = 8	
1) x + 12	2) 8 + <i>x</i>	3) 23 + x	4) x + 24
5) 41 + <i>x</i>	6) 63 + <i>x</i>	7) 82 + 13 + <i>x</i>	8) 92 + <i>x</i> + 11
Part 2 E	valuate the following o	expressions for y = 8 a	nd <i>n</i> = -2
1) y + (n)	2) 5 + (n) + y	3) 22 + y + (n)	4) y + 12 + (n)
5) 43 + <i>y</i> + (n)	6) (n) + y + 20	7) y + (n) + 11	8) 53 + (n) + y
Part 3 Eva	luate the following ex	pressions for <i>x</i> = -5 an	id <i>p =</i> 5
1) (<i>x</i>) + (p) – 10	2) 10 + (x) + (p)	3) 15 + (x) + (p)	4) (<i>x</i>) + 11 + (p)
5) (p) + 20 + (x)	<i>6) (x)</i> + 18 + (p)	7) (x) + 5 + (p)	8) 22 + (p) + (x)

Name:	65		Curriculum Connection PR.5
- Ivaluating Algo	eraic Expr	255101	15 - Café
Whitney works at a café selling m	nuffins, coffee, tea,		Menu
determine the cost of her custom	her's orders.	Scone (s) \$3.50
	'(l	Muffin (m	o) \$2.25
		Tea (<i>t</i>)	\$2.00
	Coffee	Coffee (c) \$2.50
Solve Write the algebraic ex	xpression and then eval	uate using	the menu prices
Customer Order	Expression		Answer
1) 2 coffees, 1 muffin	2 x <i>c</i> + m 2 x 2.50 + 2.2	ō	
2) 3 teas, 1 scone			
3) 4 coffees, 2 teas			
4) 2 coffees, 2 teas, 2 muffins			
5) 3 teas, 4 muffins, 2 scones			
6) 10 coffees, 10 muffins			
7) 5 teas, 3 muffins, 2 scones			
8) 3 coffees, 3 scones			

Name:				Curriculum Connection PR.5
	og Algebrei	C BEDICS	Sion	S - (X +)
Doub 1 Evolution				
	ale for x = 3. Use brack	to separate t		bers
1) 5 <i>x</i>	2) 9x	3) 3 <i>x</i>	4)) 8 <i>x</i> + 6
5) 21 <i>x</i> + 8	6) 12x - 12	7) 5x – x	8)) 9 <i>x</i> + 8 - x
Part 2	Evaluate the follow	ving expressions	for <i>y</i> = 1	0
1) $\frac{y}{2}$	2) $\frac{30}{30}$	3) 70	4	$\frac{y}{2} + 5$
2	2) y	y y		5
5) $\frac{30}{30} + 8$	6) $\frac{100}{100} + V$	7) $\frac{120}{2} - 9$	8)) $\frac{y}{x} \times y$
y y	y y	y y		y
Part 3	Write the expressions	using the values,	/operatio	ons below
984 n + x - ÷				
1) Nine times a number, add four				
2) Eight divided by four, subtract a number				
3) A number multiplied by eight, add nine				
4) Eight more than fo	4) Eight more than four divided by a number			
5) A number divided	by nine, add eight			

Name:	6	68	Curriculum Connection PR.5
Iv alu	ating Algel	orcic Expre	SZIONS
			 ר
Part 1 Eval	uate the following exp	ressions for x = 6	J
1) <i>x</i> + 16	2) 10 <i>x</i>	3) 63 – x	4) x ÷ 2
5) 24 ÷ <i>x</i>	6) 12 <i>x</i>	7) $4x - x$	8) 12 ÷ <i>x</i> + 8
Part 2 Ev	aluate the following ex	pressions for y = 8 and	l n = 3
1) $y \pm p \pm 22$	2) 50 + 1/	2) 78 v + p	(1) (1) (2)
y ' 11 ' ZZ	2) 311 · y	3) /0 - y · 11	4) y - 0 - 11
5) 40 ÷ <i>y</i> + 5	6) 11n + y	7) yn + 15	8) 60 ÷ n + y
Part 3 Eva	aluate the following ex	pressions for x = 10 an	d <i>p</i> = 5
1) x + p - 10	2) 10x + (2p)	3) 60 ÷ x – p	4) x + 9 + (3p)
5) 20 ÷ <i>p</i> + (5 <i>x</i>)	6) 9 <i>x</i> + (18 – p)	7) 6x – 5p	8) 8p + 3x

Part 1

69

Writing Equations

An equation is a statement that two expressions are equal. An expression has no equal sign, whereas an equation has an equal sign. When we can solve the answer to an expression, it becomes an equation because we add an equal sign.

Expression	Equation
Eight more than a number	Eight more than a number is 14
8 + n	8 + n = 14
n = ?	n = 6

Write equations for each sentence

Sentence	Equation	Answer
1) Nine less than a number is 11		
2) Fifteen more than a number is 22		
3) Eight times a number is 24		
4) Twelve divided by a number is three		
5) A number plus eight divided by two is 10		
6) Seven times a number plus four is 39		

Part 2

Write a sentence in words for each equation

Equation	Sentence	Value of <i>n</i>
1) 4n = 24		
2) 8 + n - 3 = 10		
3) 5 + $\frac{12}{n}$ = 7		
4) 3n – 3 = 12		

3) a=9 b=17 c=23

P=

71

Curriculum Connection PR.3

Addition - Find the Verieble

When we write an algebraic expression with an equal sign, it becomes an equation. An equation is a statement that two expressions are equal.

We can solve for a variable by balancing an equation, making sure both sides of the equal sign have the same value.

Part 1	Find out th	e value	of the variable			
1) 12	2 + n = 18	2)	n + 15 = 22	3)	32 + n	= 41
	n =		n =		n =	
4) 4!	5 + 17 = p	5)	41 + p = 62	6)	p + 63	= 81
	p =		p =		p =	
7) 7'	7 + y = 96	8)	y + 20 = 115	9)	132 + 1	.5 = y
	y =		y =		y =	
10) 15	7 + t = 192	11)	195 + t = 211	12)	236 + t	= 248
	t =		t =		t =	
13) 123	3 + a = 243	14)	165 + a = 305	15)	253 + a	= 308
	a =		a =		a =	:
16) 23	8 + 449 = s	17)	311 + n = 445	18)	s + 288	= 400
	S =		S =		S =	:
Part 2	The formula for ca	lculating	the perimeter of a sha	ape is t	o add the	side lengths
Use the fo	llowing equation t	o find th	ne perimeter of a triar	igle: j	p=a+b+	C A
1) a=6 b=	12 c=10 P=		4) a=22 b=15 c=41	P=		
2) a=7 b=	15 c=19 P=		5) a=19 b=32 c=49	P=		b/

6) a=25 b=23 c=46

P=

а

Name:	ame: 72				
Adding Decimals - Solve the Variable					
Practice Find the value of the variables below					
1) 4.5 + n = 6	2) n + 5.5 = 7	3) s + 5.3 = 8			
n =	n =	S =			
4) 8.5 + 3 = p	5) 9.2 + p = 11	6) 10.1 + r = 11.5			
p =	p =	r=			
7) 15.3 + n = 19	8) n + 16.5 = 20.5	9) t + 14.4 = 18			
n =	n =	t =			
10) 24.6 + n = 28.2	11) 28.6 + 4 = t	12) 31.6 + 5 = p			
n -	+ -	n -			
	ι -	<u>р-</u>			
Word Problems	Write the equations below a	nd find the answer			
 Jake has 1.25 pizzas left over from last night. His friend brings over some more pizza. They now have 4.25 pizzas. How much pizza did his friend bring? 					
2) Kelly is 1.5 meters tall. She hopes to grow to be 1.75 metres tall. How much will she have to grow?					
3) Carter has \$1.33 but n does he need?	eeds \$1.88 to buy a bag of chip	s. How much more			

Н

78

Curriculum Connection PR.3

Subtraction - Find the Variable

A **variable** is a letter that represents an unknown number. When we don't know a number, we can use a letter to take the place of the unknown number.

Example: 39 - n = 25

We can figure out the unknown number by balancing the equation. In this equation, n = 14.

Question Find out the value of the variable			
1) 32 - n = 26	2) n - 21 = 35	3) 52 – n = 41	
n =	n =	n =	
4) 73 - 16 = p	5) 64 – p = 53	6) p - 32 = 50	
p =	p =	p =	
7) 87 - y = 61	8) y - 93 = 13	9) 102 - 13 = y	
y =	y =	y =	
10) 109 - t = 94	11) 124 - t = 101	12) 143 - t = 129	
t =	t =	t =	
13) 158 - a = 127	14) 174 - a = 142	15) 200 - a = 175	
a =	a =	a =	

Part 2

Calculate the change a customer gets when they buy something

When a customer buys something, the formula for calculating their change (c) is money given (m) subtract the price (p) of the item. Therefore, c = m - p

m = 20 p = 12	c = <u>20</u> - <u>12</u>	c = <u>8</u>	m = 80 p = 61 c = c =
m = 40 p = 19	C =	C =	m = 100 p = 68 c = c =
m = 60 p = 27	C =	C =	m = 100 p = 44 c = c =

86

Curriculum Connection PR.3

Multiplication - Find the Variable

When we multiply a number by a variable, we do not need to use the multiplication sign. It is known that any variable next to a number means the operation we are using is multiplication.

Example: 7n = 14 <u>means</u> 7 x n = 14

We can figure out the unknown number by balancing the equation -n = 2.

Part 1 Find out the value of the variable				
1) 5n = 10	2) 4n = 16	3) 8(s) = 48		
n =	n =	s =		
4) 9 x 4 = p	5) 5p = 35	6) 7k = 21		
p =	p =	k =		
7) 3n = 21	8) 6n = 42	9) n x 7 = 77		
n =	n =	n =		
10) 5n = 45	11) 8 x 7 = t	12) 9 x 4 = p		
n =	t =	p =		
13) 8n = 96	14) 10n = 100	15) 7d = 63		
n =	n =	d =		
16) 9(s) = 27	17) 8 x 8 = s	18) 6 x 12 = t		
s =	s =	t =		

Part 2

Calculate the area using the variables for <u>Length</u> and <u>Width</u>

The formula for calculating area is: A = L x W

Calculate the area in the questions below using the values for the variables L and W

L=3 W=9	A =
L = 8 W = 7	A =
L = 10 W = 11	A =

L = 5 W = 9	A =
L = 11 W = 7	A =
L = 4 W = 13	A =

t = 440 s = 4

m =

÷

m =

t = 200 s = 5

m =

÷

m =

Ν	а	m	ו	e	
	~			~	Ľ

102

Using Lincer Equations and Pictorial Representations Questions Write a pictorial representation and linear equation of the example **Pictorial Representation** # **Real-World Example** Linear Equation Kennedy has 25 socks. She has an 9) ~9 equal number of black and white 2p + 7 = 2525 Ex) socks that she keeps in 2 piles. She p = 9has 7 randomly coloured socks. How many socks are in each pile? Stacy brought 26 cookies to school and gave them all away. She gave 8 1) to her teachers and 2 to each of her friends. How many friends did she give cookies to? Harley earned \$42 from her job today after she worked for 2 hours. 2) She received a \$10 tip as part of the \$42. What does Harley earn per hour at her job? You paid \$15 for admission to the movies. Snacks were \$4 each. If 3) you spent \$27 in total, how many snacks did you buy? In a basketball game, Henry scored 23 points. This was 5 more than 4) double the points he scored last game. How many points did he score last game? Katie and Sam went on an Easter egg hunt. Katie found 24 eggs. Katie found 3 times more eggs 5) than Sam. How many eggs did Sam find?

Name	107	Curriculum Connection PR.6
Rep	resenting Problems with Linear Equatio	ns (x + c = d)-
Ques	tions Represent the problems with linear equations (x + a =	b) and solve for <i>x</i>
1)	Camila had some markers and then bought 24 more. Now sh How many markers did she have before she bought more?	ne has 56 markers.
	Carter opened a bank account last year and has been adding added \$153. He now has \$312. How much did he have before	g to it. Today he e?
2)	Linear equation: x =	
3)	Mia tracks how many steps she takes each day. Before noon lot of steps. From noon until the end of the day, she took 7,4 she took 16,340 steps for the day. How many steps did she ta	, she had taken a 50 steps. In total, ake before noon?
	Linear equation: x =	
4)	Caleb scored a bunch of points in the first half of a basketba second half, he only had 7 points. At the end of the game, he points. How many points did he score in the first half?	e finished with 31
	Linear equation: x =	
5)	Nick's new business sold quite a few products in May. In Jun products. In May and June combined, they sold 931 products products did Nick's business sell in May?	e, they sold 572 s. How many
	Linear equation: x =	
6)	Daniel is going to a friend's house who lives far away. He dro morning before stopping for gas. He then drove another 362 arriving at his friend's house, which was 710km away. How fa before stopping?	ove for awhile this 2km before ar did he drive
	Linear equation:	X =

Name	108	Curriculum Connection PR.7
Rep	reseating Problems with Linear Equati	ons (or = b)-
Ques	Represent the problems with linear equations (ax = b	o) and solve for <i>x</i>
1)	Avery has 4 boxes of cookies. In total, she has 96 cookies. Ho are in each box? Linear equation: x =	ow many cookies
2)	Justin is a football running back. He has played 5 games this 150 yards of rushing. How many yards did he average each g Linear equation: x =	season and has ame?
3)	Cooper bought 7 new video games for \$280. How much did h average for each video game? Linear equation: x =	e spend on
4)	Kayden gets an allowance each week. After 9 weeks, he mad allowance. How much is his allowance each week?	e \$225 from his
5)	Arya is a rower. Every minute she rows, she pulls a certain n After 20 minutes, she had pulled 600 strokes. How many stro average a minute?	umber of strokes. okes does she
6)	Brooklyn has a job that pays her by the hour. She worked 6 h earned \$96. How much money does she earn per hour? Linear equation: x =	ours today and

Name	109	Curriculum Connection PR.7
Rep	resenting Problems with Linear Equations	: (œx + b = c)
Ques	ions Represent the problems with linear equations (ax + b =	c) and solve for x
	Hunter's cousin is 24 years old. He is 2 years older than twice	e Hunter's age.
1)	How old is Hunter?	
	Linear equation: x =	
2)	Jesse brought 32 treats to work and gave them all away. She boss and 2 to each of her friends. How many friends did she	e gave 8 to her give treats to?
	Linear equation: x =	
	Cindy has \$8. Her sister has 3 times as much as her brother.	The three of them
3)		
	Linear equation: x =	
4)	Dylan went to an amusement park. He had to pay for each rid decided to go on 8 rides. He also had to pay \$20 to enter the cost him \$52 at the amusement park. How much is each ride	de he went on. He park. In total, it ?
	Linear equation: x =	
5)	Carson earned \$63 from work today. He worked for 4 hours a bonus of \$15. How much does he earn per hour?	and received a
	Linear equation: x =	
	Shelly collected 66 treats on Halloween. She went to 15 hour with 6 candies at the beginning. How many candies on average	ses and started ge did she collect
6)	at each house?	
	Linear equation: x =	

Name	ne: 110			Curriculum Connection PR.7	
-Rep	resentin	g Problems with L	incer	Equatio	AS (x/c = b)—
Ques	tions Re	present the problems with li	inear equa	ations ($\frac{x}{a}$ = b) and solve for <i>x</i>
1)	Claire boug bought eno buy?	ht a lot of donuts for her pa ugh for each guest to have 3	rty. She is 3 donuts. I	s expecting 3 How many de	2 guests and onuts did she
		Linear equation:		<i>x</i> =	
2)	Everett and the money money did t	his friends earned some mo equally between the 6 frienc hey earn?	oney by se Is and eac	elling lemon ch got \$24. H	ade. They split low much total
		Linear equation:		<i>x</i> =	
3)	Amara colle equally bet How many e	ected some Easter eggs duri ween herself, her sister, and eggs did she collect in total?	ing a hunt I her brotl ?	t. She split h her. Each sib	er eggs up ling got 36 eggs.
		Linear equation:		<i>x</i> =	
4)	David is giv during the given?	en some money to spend on 5-day vacation, spending \$13	vacation. 3 each da	. He ended u y. How much	p spending it all money was he
		Linear equation:		<i>x</i> =	
5)	Weston pra minutes. Ho	cticed piano for a long time ow many minutes total did he	this week e practice	the practice for the wee	ed each day for 44 k?
		Linear equation:		<i>x</i> =	
6)	Declan doe them out fo How many o	sn't have many chocolates le r the next 8 days, allowing h chocolates did he have left b	eft from V nimself to pefore the	/alentine's Da eat 13 choco 8 days?	ay. He rationed olates each day.
		Linear equation:		x =	

Name	: 111	Curriculum Connection PR.6, PR.7
-Rej	presenting Problems with Linear	Equations
Ques	tions Represent the problems with linear equations	
1)	Dominic went to the movie theatre and paid \$13 for admissi bought inside was \$6. He ended up spending \$37 in total. Ho he buy?	on. Each treat he ow many treats did
	Linear equation: x =	d'it la
2)	Piper has a new job where she worked 20 hours in her first \$400 in total for the week. How much does Piper earn per h	week. She made our?
	Linear equation: x =	
3)	Quinn bought treats for each guest at her party. She is expendent and bought enough for each guest to receive 11 treats. How she buy in total?	cting 13 guests many treats did
	Linear equation: x =	
4)	Silas has been saving money for a long time. He earned an e and now has a total of \$375. How much did Silas have befor	e today?
	Linear equation: x =	
5)	Alex earned \$89 in total from work today. He worked for 5 h a tip of \$9. How much does he earn per hour?	ours and received
	Linear equation: x =	
6)	Micah had 26 points in the 2 nd , 3 rd , and 4 th quarter of today's with 39 points. How many points did he have in the first quar	game. He finished rter?
	Linear equation: x =	